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a b s t r a c t

Establishing correct correspondences between two faces with different viewpoints has played an
important role in 3D face reconstruction and other computer-vision applications. Usually, face images
are considered to lack sufficient distinctive features to establish a large number of correspondences on
uncalibrated images. In this paper, we investigate pore-scale facial features, which are formed from
pores, fine wrinkles, and hair. These features have many characteristics that make them suitable for
matching facial images under different variations. Using both biological observation and computer-
vision consideration, a new framework is devised for pore-scale facial-feature extraction and matching.
The matching difficulty under various skin appearances of different subjects and imaging distortion is
also analyzed. For further improving the matching performance and tackling distortions such as varying
illuminations and unfocused blurring, a pore-to-pore correspondences dataset is established for training
a more distinctive and compact descriptor. Experiments are conducted on a face database containing 105
subjects, and the results prove that the pore-scale features are highly distinctive; face images with a
minimum resolution of 600�700 (0.4 mega) pixels contain sufficient details to perform a reliable
matching in different poses. Generally, our algorithm can establish between 500 and 2000 correct
correspondences on a pair of uncalibrated face images of the same person. Furthermore, the proposed
methods can be applied to face recognition, 3D reconstruction, etc.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Do two people have identical skin blocks on their faces? From a
biological point of view, definitely not. It is a very challenging
problem to match two facial-skin blocks from the computer-vision
viewpoint, because of the requirements of finding accurate key-
point locations and extracting distinctive features in skin images.
In general, face images are considered to lack sufficient distinctive
features for tracking their geometry or for 2D direction feature
matching on uncalibrated images. Hence, a lot of the literature
requires the involvement of other man-made features, such -
as structured lighting, special makeup, and markers; or it is based
on stereo matching (1D direction feature matching) using cali-
brated images.

To the best of our knowledge, only a few studies have been
reported in the literature that attempt to establish correspon-
dences using uncalibrated face images. Lin et al. [1] employed the
SURF features [2] on face images with viewpoints 451 apart (the
face regions are of about 800�600 pixels), which typically

obtained no more than 10 inliers (i.e. correctly matched keypoint
pairs) out of a total of 30 matched candidates in 3 views (�451, 01,
451 from the frontal view). Thus, the classical structure-from-
motion method with known camera intrinsic parameters, which
extracts the correspondences of 3 views by employing RANSAC [3]
on top of the PnP [4] algorithms, fails due to both the scarcity of
absolute inliers and the small ratio of inliers to outliers detected.

Detecting and analyzing facial features is a fundamental task in
computer vision, and it is also vital to face detection, pose estimation,
landmark localization, and face recognition. Although great strides
have been made in this area, it is still challenging to detect and
obtain distinctive features from face images, especially on the pore
scale. Therefore, rather than giving a historic review of the methods
for facial-feature extraction and detection, we will categorize the
methods into three different levels: primary facial features, marker-
scale facial features, and pore-scale facial features.

Primary facial features include the eyes, eyebrows, nose,
mouth, and the face boundary. There are many studies reported
on face alignment [5,6], face recognition [7,8], and facial-organ
detection [9,10]. Primary facial features are the easiest to detect,
but they are difficult to locate precisely.

The definition of marker-scale facial features provided by [11]
involves ten categories, such as freckle, mole, scar, and wrinkle.
Park and Jain [12] proposed an automatic facial-mark (e.g. scars,
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moles, and freckles) detection method. First, the active appearance
model (AAM) is employed to detect and remove the eyes, eye-
brows, nose, mouth, and face boundary. Then, the LoG blob
detection is applied to detect the facial marks. With a database
of 1225 images of 671 distinct subjects, experiment results showed
that 90% of the subjects in the database have fewer than 15
marker-scale facial features, while the overall average is about 7.
Thus, the number of marker-scale facial features is insufficient to
establish the correspondences needed in real-world applications.

Pore-scale facial features include pores, fine wrinkles, and hair,
which commonly appear in the whole face region. Due to small
concavities where the incoming light is blocked, the pores are
small, darker points, while the wrinkles are in the form of line
structures. The hair also appears as small, darker points, and as
lines. Lin and Tang [13] considered pore-scale facial features as
repetitive texture units. A set of response vectors is extracted from
skin regions using Gabor filters. Then, the skin texton distribution
is used to represent skin textures. Cula et al. [14] developed two
bidirectional texture models for use in skin texture recognition.
Their research also considers the pore-scale facial features as
textures, rather than identifying the pores in facial images.

To the best of our knowledge, there is no literature using the
pore-scale facial features to perform keypoint detection and to
establish precise correspondences on uncalibrated images. This is
a challenging and difficult task because, intuitively, pore-scale
facial features such as pores are similar to each other, so they are
not distinctive. In this paper, we will solve the potential difficulties
in extracting pore features from facial-skin images and analyze the
relationship between the facial-skin appearance/image condition
and the matching results. The proposed pore-scale feature-extraction
framework is shown in Fig. 1; it mainly consists of quantity-driven
detection, relative-position description, and candidate-constrained
matching of pore-scale keypoints. Each of these steps is designed to
identify pore-scale facial keypoints according to both biological
observation and computer-vision consideration.

First of all, from a biological point of view, the quantity of pores
on different faces should be similar even for people who have very
different skin appearances; but the level of difficulty in detecting
the pores varies. For pore-scale keypoint detection, a quantity-
driven DoG detector is proposed in our algorithm. We use a
Gaussian kernel to model the blob-shaped, pore-scale features so
as to determine the number of DoG octaves for the detection.
Unlike the general keypoint-detection methods, which use a
constant threshold to detect keypoints, our method uses an
adaptive threshold to extract a certain number of keypoints on a
skin region. Furthermore, the DoGs sampling frequency is deter-
mined by the quantity of inliers in skin-matching experiments.
In particular, the quantity of inliers and the repeatability of the
keypoints are unified in our framework.

Based on the peak response of the modeled pore-scale feature
on the DoG layers, the adaptive threshold is normalized as a new
measure, namely the Pore Index, to characterize the skin appear-
ance of different subjects. Thus, the Pore Index can also be used to
analyze the difficulty level of matching faces under different image
distortions and skin appearances. The pore-scale feature modeling
and the Pore Index can provide us with a better understanding of
the properties of pore-scale facial features.

We propose using relative-position information a description of
the pore-scale facial features. For simplicity and convenience, the
state-of-the-art feature-extraction method “Scale-Invariant Fea-
ture Transform (SIFT)” [15] is adapted to extract the relative-
position information around a keypoint; this method is called
Pore-SIFT (PSIFT). In order to include the information about the
relative position of the pore-scale keypoints, a larger neighbor-
hood size is needed than is the case for SIFT.

With this pore-scale feature-extraction framework, we can
successfully establish a large number of correspondences on
uncalibrated face images. To the best of our knowledge, no existing
methods can establish a similar number of matched keypoints
from two uncalibrated skin images of the same subject. In our
experiments, we will study the influence of each stage of our
proposed algorithm on the keypoint-matching performances.
Based on the results, we can conclude that a fine-scale sampling
rate, a fine pre-smoothing, an adaptive thresholding, and a
relative-position descriptor are all important for achieving accu-
rate results. The feature used for pore-scale keypoints should be
robust to distortions such as noises, unfocused blurring, and
reflectance. However, such distortions are hard to model or to be
considered in the design of a feature-extraction framework. Hence,
to further improve our algorithm, we establish a pore-to-pore
correspondences dataset for learning a discriminant subspace in
order to tackle the distortions and to achieve a more accurate
pore-matching performance. In our algorithm, after projecting the
PSIFT features onto a linear discriminant analysis (LDA) subspace,
those intra-pore variations will be minimized, while the inter-pore
distances will be maximized. Our PSIFT feature projected onto the
LDA subspace is called LDAPSIFT, which can usually establish 30%
more correspondences than PSIFT can. Both the LDAPSIFT and the
PSIFT features are highly distinctive, and can be used to establish
precise correspondences between uncalibrated face-image pairs.

With the prior knowledge of facial images, the use of a
candidate-constrained matching scheme can significantly reduce
the number of candidates considered in matching, so that the
computational complexity of our algorithm can be reduced.
Comprehensive experiments have also been conducted on all
105 subjects in a face database, in which the face images contain
different types of distortions and variations. The experimental
results will be analyzed and discussed comprehensively.

Fig. 1. The structure of the proposed pore-scale facial-feature extraction and matching framework.
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To the best of our knowledge, this is the first framework which
is suitable for pore-scale facial-feature extraction and which
can establish a large number of correspondences between uncali-
brated face images. Our contributions are as follows:

� Our method identifies the pores in facial images, rather than
considering pore-scale facial features as a kind of texture.

� We propose a new framework for pore-scale facial feature-
extraction and description, and we describe how SIFT, a tradi-
tional local descriptor, can be adapted to form a pore-scale
facial feature descriptor.

� Based on our framework, a pore-to-pore correspondences
dataset containing 4240 classes of matched pore pairs is
formed by the same pore keypoints from 4 face images of the
same person with different poses. These 4 keypoints form a
track, and can produce 6 keypoint matched pairs for each class.
In other words, we have 6�4240 matched pore pairs in the
dataset.

� Based on this pore-to-pore dataset, a learning-based pore-scale
facial feature, namely LDAPSIFT, is proposed, which is more
distinctive and compact than PSIFT.

� Our proposed methods can establish a large number of corre-
spondences between uncalibrated face images of the same
subject using the pore-scale facial features, which leads
to many potential applications. Our work shows a way to
merge general computer-vision approaches and face-based
approaches.

The rest of this paper is organized as follows: Section 2 describes
a model for the pore-scale facial feature, and introduces the
quantity-driven pore-scale facial-feature detection scheme and the
Pore Index. Section 3 presents the pore-scale facial-feature descrip-
tor based on the relative positions of keypoints, and a pore-to-pore
dataset is constructed so that discriminant projections are learned
which minimize the ratio of the intra-pore variations to the inter-
pore differences. Section 4 introduces our proposed candidate-
constrained matching scheme. Section 5 shows the experimental
results for using the pore-scale facial features for matching. The
statistics of the Pore Indices of 420 images are used to analyze the
difficulty of face matching with different facial-skin appearances.
Some potential applications are also discussed. Finally, Section 6
summarizes this paper and discusses some directions for our
future work.

2. Quantity-driven detection and pore index

Pore-scale facial features – such as pores, fine wrinkles and hair
– are darker than their surroundings in a skin region, and those
features which are blob-shaped or endpoint/corner-shaped pro-
vide stable locations for matching purposes. Therefore, we apply
the DoG detector for keypoint detection on multi-scales, which is
given as follows:

Dðx; y; σÞ ¼ Lðx; y; kσÞ�Lðx; y; σÞ
¼ ðGðx; y; kσÞ�Gðx; y; σÞÞnIðx; yÞ; ð1Þ

where the scale space of an image Lðx; y; σÞ is the convolution of
the image Iðx; yÞ and the Gaussian kernel

Gðx; y; σÞ ¼ 1
2πσ2

exp ð�ðx2þy2Þ=2σ2Þ: ð2Þ

We construct the DoG in octaves, which have the σ doubled in the
scale space. Each octave has Ns DoG layers, so the factor k in (1) is
defined as

k¼ 21=Ns : ð3Þ
Unlike the general DoG detector, which localizes both the scale-
space maxima and minima of the DoG, we detect only the maxima
of the DoG to locate the darker keypoints in face regions. An
example of the pore-scale facial-feature responses with DoG is
shown in Fig. 2(c).

2.1. Pore-scale facial-feature modeling

A blob-shaped pore-scale keypoint is a small, darker point due
to its small concavity, where incident light is likely blocked. There is
no sharp or clear boundary around a pore keypoint. For a better
understanding of such pore-scale facial features and the sampling
frequency selected in the detection, we model the blob-shaped skin
pores using a Gaussian function, as follows:

poreðx; y; σÞ ¼ 1�2πσ2Gðx; y; σÞ; ð4Þ
where σ is the scale of the pore model. This models a skin pore with
the gray-level intensities normalized to [0, 1], as illustrated in Fig. 3.
Then, the DoG response of a pore, denoted as, Dpore, can be
computed as follows:

Dporeðx; y; σ1; σ2Þ
¼ ½Gðx; y; kσ1Þ�Gðx; y; σ1Þ�nporeðx; y; σ2Þ

Fig. 2. (a) Four face images with different skin conditions from the Bosphorus face database, (b) zoomed-in local skin-texture images, and (c) the DoG of the zoomed-in local
skin-texture images. The four images in (a) are named Subjects 1, 2, 3 and 4 in this paper.
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¼
Z þ1

�1
½Gðu; v; kσ1Þ�Gðu; v; σ1Þ�

� poreðx�u; y�v; σ2Þ du dv; ð5Þ
where σ1 is the scale of the pore model and σ2 is the scale of the
DoG filter. The magnitude of the DoG should be maximized so as to
be selected as the maximum when compared to its 26 neighbors in
a 3�3�3 region. Hence, the response function at the center (x¼0,
y¼0) of the pore is determined as follows:

Dporeðx¼ 0; y¼ 0; σ1; σ2Þ

¼
Z þ1

�1
½Gðu; v; kσ1Þ�Gðu; v; σ1Þ�

� poreð�u; �v; σ2Þ du dv

¼ σ22=ðσ21þσ22Þ�σ22=ðk2σ21þσ22Þ: ð6Þ
The maximum of Dpore is determined by taking the derivative of this
function with respect to σ1 and setting it at zero, giving

σ̂1 ¼ k�1=2σ2: ð7Þ
Thus, the scale of the o-th octave's second-final layer (the ðNsþ1Þ-st
layer in a total of Nsþ2 layers) is σ1;o;Ns þ1 ¼ 2oσ0, where σ0 is the
initial scale of the original image. The σ0 is usually set at a value
larger than 0.8, which is the minimum needed to prevent signifi-
cant aliasing [16]. Consequently, when three DoG octaves (i.e. o¼3)
are constructed, the largest scale of the detected Gaussian pore
function
σ2 ¼ k1=2σ̂1;o ¼ 3;Ns þ1 ¼ k1=223σ046:4ðwhere k41; σ040:8Þ, which
is large enough for the detection of pore-scale facial keypoints.
Therefore, the number of DoG octaves No is set at 3 for all the
experiments in this paper.

2.2. Quantity of keypoints

From the biological point of view, different people should have
a similar quantity of pores in their facial skin, while from the
computer-vision viewpoint, the quantity of keypoints detected
directly affects the number of inliers available in the matching
process. On the other hand, if many of the keypoints are noises or
are unstable, it will be hard to find the inliers using RANSAC.
Hence, via experiments, we have found that an appropriate
number of keypoints that can densely cover the whole skin region
is about 5000. However, this number is affected by the dense DoG
responses at hairy (e.g. bearded) areas, which need to be re-
weighted or discarded. In order to evaluate skin conditions
precisely, we simply crop a hairless cheek region, which is about
7% (in size) of a whole face region, in our experiments. Fig. 4

illustrates the position and the size of the region to be extracted
from a face image. Facial-landmark detection [17] or face-parsing
[18] methods can be used for automatic, pre-defined skin-region
cropping. With this cropped region, we set the desired number of
keypoints, Nk, to within the range [450, 500].

2.3. Pore Index and adaptive threshold

Substitute (7) into (6), the peak value P of the DoG response of a
pore Dpore is given as follows:

P ¼Dporeðσ̂2Þ ¼ ðk�1Þ=ðkþ1Þ: ð8Þ
This equation displays two very useful properties: (a) The max-
imized response is independent of the scale of the pores, so it is
also invariant to image resolutions. (b) The peak value is relevant
to the sampling frequencies in scale, due to the fact that the factor
k is determined by the number of layers per octave Ns, shown in
(3). Hence, the peak value is used to normalize the response with
different sampling frequencies in scale in our sampling-frequency
evaluation (i.e. the experiments in Section 2.4).

To determine the threshold which can result in NkA ½450; 500�
from the cropped skin region, the binary search method is
performed on a threshold list. The threshold list is set within the
range [0, 0.2� P], where P is the peak value of the DoG response of
a modeled pore. In other words, an adaptive threshold τ is
searched, which can be considered as the product of a coefficient
Rpore and the peak value P. This coefficient Rpore is called the Pore
Index, and Rpore is the ratio of the adaptive-peak threshold τ used in
the PSIFT detector to the modeling-peak value P of the DoG
images, defined as follows:

Rpore ¼ τ=P: ð9Þ
Therefore, the Pore Index Rpore represents the roughness/con-

trast of the skin. In Section 5.4, we will show how the kinds of
distortions affect the Pore Index. In Section 5.6, a method for
analyzing the difficulty of matching based on the Pore Index will
be described.

2.4. Quantity-driven parameter selection

2.4.1. Matching performance measurement
Most of the pore-scale facial features are tiny and of low

contrast. Thus, the selected parameters should be robust to noise
or blurring for real, practical applications. However, the noise and
blur kernels are hard to model. Hence, rather than using uniform-
noise-added images as in [15], a skin dataset cropped from face
images in the Bosphorus database [19] was used in our experi-
ments. The database contains face images at different poses,
captured using unsynchronized and uncalibrated cameras. The four
subjects shown in Fig. 2(a), together with 16 other subjects selected
randomly, are used to generate a skin dataset. In this experiment,
skin regions in different poses are grouped to form four different

Fig. 3. A skin pore is modeled using a 2D Gaussian function with the gray-level
intensities normalized to [0, 1] and σ ¼ 1, where the coordinates (0, 0) represent the
pore location.

Fig. 4. Illustration of a cropped skin region in a face image for keypoint detection.
(d is the distance between the right eye center and the right mouth corner.)
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datasets (101 and 201, 101 and 301, 201 and 301, and 201 and 451).
Fig. 4 illustrates the cropping scheme: all of the facial-skin images
are cropped from the same region of the respective face images.

Before measuring the matching performance, several notions
should first be introduced. To match a keypoint in one face image
to that in another face image, the Euclidean distances between the
keypoint descriptor and that of another keypoint on the other face
are computed. The best-matched keypoint is determined by the
nearest-neighbor rule, i.e. the keypoint in the other face image
with the minimum Euclidean distance. The distance ratio is
defined as the ratio between the Euclidean distances of the best-
matched keypoint and the second-best keypoint. A matched key-
point is accepted if the distance ratio is smaller than a threshold,
which is determined empirically by experiments. Hence, the
number of matched keypoints is far fewer than the number of
keypoints in each image. The matched pairs of keypoints are then
verified using RANSAC to fit the epipolar constraint in order to
capture the inliers.

In [15], repeatability is used to measure the matching perfor-
mance of the descriptors with different parameters, which is
defined as the number of inliers divided by the smaller number
of keypoints from the two images under consideration. Because
the number of pore-scale keypoints detected in a face image is
predefined by an adaptive threshold, the number of inliers is
therefore proportional to the repeatability in our proposed frame-
work. Furthermore, whether or not the inliers can be successfully
identified by RANSAC is closely dependent on the inlier rate. The

inlier rate is defined as the ratio of the number of inliers identified
to the total number of matches.
2.4.2. Sampling frequency in scale

In this section, the sampling frequency in scale is experimen-
tally determined. The quantity of inliers is used to evaluate the
matching performance at different sampling frequencies. The
inlier rate is also used to show the robustness of the different
sampling frequencies. Each keypoint in one face image is matched
to the keypoints in another face image. The matched keypoint is
accepted if the distance ratio is smaller than 0.8, which is
determined empirically by experiments. The matched pairs of
keypoints are then verified using RANSAC, where the distance
threshold used is set at 0.001, considering the fact that the images
are unsynchronized and the facial appearances are non-rigid.

Fig. 5(a) and (b) shows the experimental results for determin-
ing the optimal number of layers (scales) Ns in each DoG octave.
The results were obtained using 3–8 scales per octave; 8 layers per
octave is the maximum that can prevent significant aliasing.
All the results are the average of the four datasets. Fig. 5
(a) shows that the average number of inliers of the 20 subjects is
significantly improved when more scales are used, although all of
the subjects cannot achieve the highest inlier rate. The average
inlier rates in Fig. 5(b) are always more than 85%; this reflects the
robustness of PSIFT. To ensure that a sufficient number of inliers
can be densely located in the whole facial-skin region, the quantity
of inlier candidates is more important than the inlier rate in our
algorithm. Therefore, 8 scales are sampled in each octave in our

Fig. 5. (a) The numbers of inliers with different numbers of scales or layers sampled per octave, (b) the inlier rate with different numbers of scales sampled per octave, (c) the
numbers of inliers detected with different values of the prior smoothness σ0, and (d) the inlier rates with different values of the prior smoothness σ0.
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algorithm, and this setting is used for all the experiments in
this paper.

2.4.3. Sampling frequency in the spatial domain
Fig. 5(c) and (d) shows the matching performance when the

prior smoothing σ0 varies. The results show that the largest
number of inliers is obtained when the prior smoothing σ0 is set
at 1. Furthermore, the average inlier rates of the 20 subjects are
almost a constant. Although the highest inlier rate is not obtained
when σ0 ¼ 1, the quantity of inliers is more important for the face
matching application. Furthermore, the outlier candidates can be
effectively excluded from the matching process in the next step.
Therefore, we choose to set the prior smoothing σ0 at 1 for all the
experiments in this paper.

2.4.4. Eliminating the edge responses
A poorly defined peak in the DoG scale space will have a large

principal curvature across the edge, but a small one in the perpendi-
cular direction. The principal curvature is represented by the
eigenvalues of a 2�2 Hessian matrix H, r is the ratio between the
larger eigenvalue and the smaller one, and ðrþ1Þ2=r is at a minimum
when the two eigenvalues are equal, and it increases with r. In our
experiments, the threshold rth of r is set at 3.

3. Relative-position descriptor and discriminant learning

In this section, we will describe the local PSIFT descriptor,
which is adapted from SIFT to extract the relative-position
information about neighboring pores. Using the PSIFT descriptors,
keypoints from two facial-skin regions can be matched. In order to
further improve the matching accuracy, a pore-to-pore correspon-
dences dataset is constructed and used to learn a discriminant
subspace for pore-feature matching. The performance of these two
features will be evaluated in Section 5.

3.1. Relative-position descriptor

Fig. 2 shows some sample results based on a DoG layer in an
octave. The lighter points on the DoG, as shown in Fig. 2(c),
represent the responses of the feature points. These points are
indeed very similar to each other when they are observed
individually: most of them are blob-shaped, and the surrounding
region of each keypoint has almost the same color. However,
unlike man-made textures, the relative positions of the pores are
unique. Hence, the descriptor should extract not only the informa-
tion around the keypoints themselves, but also the information in
a neighborhood wide enough to include the neighboring pore-
scale features. Thus, both the number of subregions and the
support size of these subregions used in the SIFT descriptor are
enlarged, as shown in Table 1. In addition, the keypoints are not
assigned a main orientation, because most of the keypoints do not
have a coherent orientation.

3.2. Pore-to-pore correspondences dataset

Using the proposed pore-scale feature-extraction framework,
we have built a pore-to-pore correspondences dataset so that the
learning for pore-pair matching can be conducted. This is the first
dataset of its kind. In the following, we will describe how this
dataset is generated.

The Bosphorus face database [19], which includes 105 distinct
subjects, is used to develop the pore-to-pore correspondences
dataset. Those face images with 101, 201, 301 and 451 poses are
used. A total of 420 skin-region images are obtained by cropping
from the cheek region of the face images. Fig. 4 shows the cheek
region cropped from a face image, and Fig. 2 illustrates the 4 face
samples whose corresponding cropped skin regions are used to
establish the dataset.

With the cropped skin regions, we detect their pore-scale
keypoints and generate the corresponding PSIFT descriptors based
on our proposed pore-scale extraction framework. Then, for each
subject, its pore keypoints at one pose are matched to the
corresponding pore keypoints at an adjacent pose; this establishes
three sets of matched keypoint pairs of 101 and 201, 201 and 301,
301 and 451. Two keypoints are matched if they have the smallest
Euclidean distance between their PSIFT descriptors, and if their
distance ratio is smaller than 0.9. Then, the RANSAC algorithm [3]
is applied to the matched candidates to identify those inliers
which satisfy the epipolar constraint. During each RANSAC itera-
tion, a candidate fundamental matrix is calculated using the eight-
point algorithm [20], followed by non-linear refinement. After
finding a set of matches between each image pair, we organize the
matched keypoints to form tracks. A track is a set of matched
keypoints across the face images of a subject at different poses.
If a track contains more than one keypoint in the same image, it is
considered to be inconsistent and is removed. We choose only
those consistent tracks containing 4 keypoints corresponding to
the 101, 201, 301 and 451 pose. Finally, 4240 tracks are established,
which are then used to learn a discriminant subspace for pore-
scale keypoint matching.

3.3. Discriminant learning

The extracted features should also be robust to distortions such
as noises, unfocussed blurring and reflectance. However, such
distortions are hard to model and are a challenge in the design
of the feature-extraction framework. To tackle such distortions,
a supervised learning procedure based on LDA is proposed.

The set of matched pore-keypoint tracks is used for learning,
whereby 4 pore keypoints in a track form a class of matched pore
keypoints. LDA is employed, which maximizes the discrimination
between different classes, and minimizes the variance within the
same class. In other words, this method learns a set of projection
vectors which maximizes the ratio of the between-class scatter to
the within-class scatter. The between-class scatter matrix SB is
defined as SB ¼∑c

i ¼ 1Niðμi�μÞðμi�μÞT and the within-class scatter
matrix SW is defined as SW ¼∑c

i ¼ 1∑xk AXi
ðxk�μiÞðxk�μiÞT , where μi

is the mean descriptor of the class/track Xi, Ni is the num-
ber of examples in the class/track Xi, and c (equal to 4240 in our

Table 1
Parameters of the PSIFT and SIFT descriptors.

Parameters PSIFT SIFT

No. of subregions 8�8 4�4
Support size of total subregions 48� scale of keypoints 12� scale of keypoints
Support size of each subregion 6� scale of keypoints 3� scale of keypoints
No. of orientation bins 8 8
Dimension of the feature 512 128
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pore-to-pore dataset) is the number of classes/tracks. We seek the
optimal projection Wopt, which maximizes the ratio of the deter-
minant of the between-class scatter matrix of the projected
examples to the determinant of the within-class scatter matrix
of the projected examples, i.e.

Wopt ¼ arg max
W

jWTSBW j
jWTSWWj

ð10Þ

and the projection Wopt is the eigenvector with the largest eigen-
value of the following generalized eigen system: SBWopt ¼ λSWWopt .
After projecting a PSIFT descriptor onto this LDA subspace, we

normalize the projected descriptor to unit magnitude to form the
LDAPSIFT descriptor.

4. Candidate-constrained matching

In order to achieve a more efficient and accurate matching,
a candidate-constrained matching scheme based on two stages of
matching will be presented.

In real applications, it is often the case that some features from
two face images do not have any correct matches. This is because
the two facial regions considered in the matching do not overlap.
Furthermore, noise and blurring caused by a camera out of focus or
in motion can have a significant influence on the matching result:
some keypoints may not be detected in the second image, or the
local-feature description may vary according to facial expressions.
Hence, a candidate-constrained matching scheme based on two
stages of matching is proposed to narrow the matching candidates
and to achieve accurate matching, based on both the inter- and the
intra-scale facial information.

First, the inter-scale facial information includes the relative
locations of the pore-scale facial features and the primary facial
features, such as the eyes and mouth, and the rough epipolar

Fig. 6. Keypoint visualization based on Subjects 1–4's skin images corresponding to Fig. 2 (different colors for the keypoints indicate their scale, as shown in the color bar).
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 2
Pore Index statistics (Average/Normalized Standard Deviation) of Subjects 1–4's
skin images with different poses.

Subject Avg/NStd

1 0.0147/0.0527
2 0.0176/0.0255
3 0.0239/0.0237
4 0.0308/0.0394
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constraint, which is estimated by RANSAC in the first matching.
Using this information, we can dramatically narrow the searching
range in the face image to be matched, which can help reduce the
number of outliers. The searching range can be considered only
within a certain vertical range. In our experiments, the searching
area in the vertical direction is limited to 10% of the image height.
Thus, the searching area is narrowed to 20% of the whole face in
the first matching. In the second matching, the estimated epipolar
constraint and its relative location to the primary facial features
are used, and the searching area can then be narrowed to about 5%.

The intra-scale facial information about facial features include the
scales and the local descriptions of the keypoints, which are used in
the matching process to further narrow the search of matched
candidates. Face images captured from different views can be scaled
so as to have a similar resolution. Usually, the higher-resolution face
image can be down-scaled and aligned to the lower-resolution one.
Hence, the scale of the detected keypoints in the two images should
be similar. The scale of a keypoint here is the scale of the DoG layer
where the magnitude is maximum.We define scale ratio as the ratio of
the scales of the two keypoints from the two face images to be
matched. Hence, we can further narrow the matching candidates
according to the scale ratio. Two keypoints may be matched if their
scale ratio is within the range [0.5, 2].

Finally, for those keypoints that satisfy the scale ratio con-
straint, their Euclidean distances are computed. A pair of keypoints
with the closest distance is matched if their distance ratio is
smaller than a certain threshold. The estimation of the positions of
the keypoints to be matched based on facial features is summar-
ized in Algorithm 1, while the candidate-constrained matching
scheme is summarized in Algorithm 2. Based on the matching
scheme, between 1000 and 3000 matches between two face
images can be established. Then, RANSAC is employed to find
the inliers and estimate the fundamental matrix robustly.

Algorithm 1. Estimation of a candidate's region.

1: Given two images I1 and I2, with a keypoint at (x2, y2) in I2,
a possible region of the corresponding keypoint (x̂1, ŷ1) in
I1 is to be estimated.

2: For image I2, ðxLE2 ; yLE2 Þ, ðxRE2 ; yRE2 Þ, ðxLM2 ; yLM2 Þ and ðxRM2 ; yRM2 Þ are
the coordinates of the left eye, right eye, left mouth corner
and right mouth corner, respectively.
The fundamental matrix is defined as F.

3: Connect the points ðxLE2 ; yLE2 Þ ðxLM2 ; yLM2 Þ and the points
ðxRE2 ; yRE2 Þ ðxRM2 ; yRM2 Þ, to form two lines, which divide the
second image I2 into the left, the center, and the right

subregions, denoted as IL2, I
C
2 , and IR2, respectively.

4: Compute the similarity transformationTL, based on the
coordinates of the left eye and the left mouth corner in I2
and I1.

5: Compute the homography transformation TC, based on the
correspondences of the left eye, right eye, left mouth
corner, and right eye corner in I2 and I1.

6: Compute the similarity transformation TR, based on the
coordinates of the right eye and the right mouth corner in
I2 and I1.

7: Input: (x2, y2), I
L
2, I

C
2 , I

R
2, T

L, TC, TR and F.
8: Compute the epipolar line l1 based on (x2, y2) and F, and

define the direction of l1 as θl1.
9: if (x2, y2) in IL2 then
10: Transform (x2, y2) to (x01, y

0
1) using TL.

11: Project (x01, y
0
1) to l1, and compute (x̂1; ŷ1).

12: else if (x2, y2) in IC2 then
13: Transform (x2, y2) to (x01, y

0
1) using TC.

14: Project (x01, y
0
1) to l1, and compute (x̂1; ŷ1).

15: else if (x2, y2) in IR2 then
16: Transform (x2, y2) to (x01, y

0
1) using TR.

17: Project (x01, y
0
1) to l1, and compute (x̂1; ŷ1).

18: end if
19: Output: the ellipsoid region Rðx; yÞ satisfies

x� cos ðθl1Þþy� sin ðθl1Þ� x̂1
� �2

=a2

þ �x� sin ðθl1Þþy� cos ðθl1Þ� ŷ1
� �2

=b2r1; (11)

where a¼ 0:32� H1 and b¼ 0:04� H1. Thus, the area of
this ellipsoid region is about π � 0:32� 0:04�
W1=H1 � 5% of the total area of the first face image.

Algorithm 2. Candidate-constrained matching.

1: Assume that there are Nk1 and Nk2 keypoints detected in I1
and I2, respectively. The coordinates and the scale of the i-
th keypoint in I1 are denoted as (xi1, y

i
1) and σi1,

respectively. Similarly, the coordinates and the scale of the

j-th keypoint in I2 are denoted as (xj2, y
j
2) and σj2,

respectively. Without loss of generality, assume that
Nk1oNk2. The height of the image I1 is H1.

2: Matching the keypoints is established from I2 to I1. After
the first stage of matching, the fundamental matrix is F1.

3: for Stage (t¼1,2) do
4: for the j-th keypoint in I2 do
5: Initialize a candidate list p, which includes all the

keypoints in I1 (size(p)¼Nk1).
6: for the i-th keypoint in I1 do
7: if t ¼ ¼ 1 and jyj2�yi1jo0:1� H and

0:5r jσj2=σi1jr2 then
8: p is not updated.
9: else if t ¼ ¼ 2 and (xi1; y

i
1) ARðxj2; yj2Þ (described in

Algorithm 1) and 0:5r jσj2=σi1jr2 then
10: p is not updated.
11: else
12: Remove the i-th keypoint from the candidate list

p of I1.
13: end if
14: end for
15: if the distance ratio based on the reduced candidate

list p is smaller than δ, which is a constant between
0.8 and 0.9. then

16: A match is established.
17: end if
18: end for
19: Using RANSAC, compute the fundamental matrix F and

determine the inliers.
20: end for

5. Experiments

In this section, we will evaluate the performances of our
proposed pore-scale facial features in terms of accuracy for pore
identification and skin/face matching. Two evaluation criteria are
used based on different testing datasets: the receiver operating
characteristics (ROC) curves and equal error rate (EER) using the
pore-to-pore correspondences dataset, and the number of inliers
and the repeatability from RANSAC using an uncalibrated dataset.
Both of these two dataset are generated from the Bosphorus
database [19]. The face images used in the experiments are the
original size in Bosphorus database (about 1400�1200 pixels)
unless otherwise specified.
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Three types of distortions – namely low resolution, noise, and
blurring – are simulated to evaluate the robustness of the pore-
scale facial features. The variations of the Pore Indices for facial-
skin images with these distortions are discussed. We have also
collected the statistics of the Pore Indices for 420 face images.
Finally, based on these results, a method that can estimate the
difficulty level of face matching based on the Pore Index is
presented.

Our methods will be compared with the state-of-the-art matching
approach based on SIFT [15]. In the experiments, the number of inliers
detected is used to evaluate the performance of the matching task.
All the parameters of SIFT are set at the recommended values in [15]
except the peak threshold for the DoG detection. In [15], the peak
threshold of the SIFT detector is set at 0.03 for the best performance,
which results in extracting as few as 10 keypoints in face images.
Therefore, the peak threshold of the SIFT detector in our experiments
is reduced and set at 0.005, which leads to detecting a similar number
of keypoints as the PSIFT detector. In our LDAPSIFT learning proce-
dure, 2120 tracks are used for training. The remaining 2120 tracks are
used for testing.

5.1. Pore-scale facial-feature statistics and visualization

Fig. 2 shows four face samples with the corresponding zoomed-
in, local skin-texture images and the corresponding DoG layers.
These faces have very different skin conditions. Subject 1's skin is
very smooth and fine, while Subjects 2 and 3 have ordinary skin
conditions. The pores on Subject 2 are smaller than those on
Subject 3. In addition to the pore-scale facial features, Subject
4 has a greater number of marker-scale facial features. Never-
theless, the total numbers of PSIFT keypoints detected are similar
because we have used our quantity-driven detection scheme. We
define the normalized standard deviation (Nstd) of the Pore Indices
as the standard deviation of the Pore Indices divided by the
corresponding average of the Pore Indices, which is used to
measure the difference between the Pore Indices in various face
images of the same subject. Fig. 6 illustrates the keypoint-
detection results, where different colors for the keypoints repre-
sent the scales detected on the corresponding DoG layers. The
average and the normalized standard deviation of the Pore Indices
in 4 images of each of the subjects are summarized in Table 2.
We find that the Pore Indices can effectively represent the rough-
ness/contrast of the skin images. Later, the average and the
normalized standard deviation of the Pore Indices are used to
analyze the difficulty level of face matching; further details will be
described in Section 5.6.

The statistics of the Pore Indices for 420 images from the
Bosphorus database [19] are collected based on the cropped skin
regions, as illustrated in Fig. 4. The frequencies of the different
Pore Indices for the face images are shown in Fig. 7. The distribu-
tion of the Pore Indices reflects the distribution of people's skin
appearances.

5.2. Descriptor learning based on the pore-to-pore dataset

Based on the PSIFT framework, 4240 pore tracks were pro-
duced from 100 subjects; the details have been described in
Section 3.2. In our LDAPSIFT learning procedure, we randomly
select 2120 tracks from 55 subjects for LDAPSIFT training. Then,
the remaining 2120 tracks from the other 45 subjects are used for
testing the performances of the different descriptors. Every track is
composed of 4 pore keypoints from facial images of the same
subject at 101, 201, 301, 451 difference from the corresponding
frontal-view image. In our experiments, those pores at the 101 are
chosen to form the gallery set, while those pores at 451 form the
testing set. The ROC curves and the EERs of the different descrip-
tors are presented in Fig. 8.

SIFT can achieve an EER of only 43.34%, while LDAPSIFT and
PSIFT produce a significant improvement over SIFT: less than 4%
and 8.28%, respectively. The results for LDAPSIFT and PSIFT show
that the pore-scale facial features are distinctive and can make
much more accurate identification among a huge number of pores.
The ROC curves of LDAPSIFT with different descriptor dimensions
are also given. LDAPSIFT with a dimension of 128 is used in the

Fig. 7. The frequency of subjects with different Pore Indices (the bin size is 0.001
and the number of bins is 41).

Fig. 8. ROC curves of the different descriptors. In the parenthesis, the first number
is the dimension of the descriptor and the second one is the EER.

Table 3
Skin matching results.

Method Avg. no. of
inliers

Repeatability
(%)

No. of image pairs
on which more
than 20 inliers

LDAPSIFT 89.33 18.01 102
PSIFT 73.86 14.89 96
SIFT detectorþPSIFT 25.94 5.95 44
PSIFT detectorþSIFT 8.65 1.74 11
SIFT 3.66 0.79 5
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rest of the experiments in this paper; this is far fewer than that of
PSIFT (whose required dimension is 512).

5.3. Skin matching based on the Bosphorus dataset

In this section, we evaluate the performance of each stage of
our algorithm in terms of skin matching. We use 105 skin-region
pairs cropped from 210 face images, which were captured at 101
and 451 to the right of the frontal view in the Bosphorus database
[19], as shown in Figs. 2 and 5. Considering the fact that the
dataset is uncalibrated and unsynchronized, the distance thresh-
old used in RANSAC is set at 0.0005 to fit the epipolar constraint.

To investigate the performance of each stage of our algorithm,
we combine the different detectors and descriptors in two
different ways, namely SIFT detectorþPSIFT descriptor and PSIFT

detectorþSIFT descriptor. Having changed the default peak
threshold from 0.03 in [15] to 0.005 in our experiment, the SIFT
detector can detect a similar average number of keypoints over
210 skin-region images to the PSIFT detector. Table 3 illustrates
the number of inliers after RANSAC, the repeatabilities, and the
number of image pairs which have more than 20 inliers, for each
of the methods. Only 5 and 44 out of 105 image pairs have more
than 20 inliers using the SIFT descriptor with the SIFT detector
and with the PSIFT detector, respectively, i.e. most of the cases
fail to match the pore keypoints. The SIFT detector with the PSIFT
descriptor fails most of the cases, too. To achieve a good
performance, the PSIFT detector with the PSIFT descriptor or
with the LDAPSIFT descriptor should be considered; it can match,
on average, 73.86 and 89.33 inliers, respectively, from the
image pairs.

Fig. 9. Respective numbers of inliers using PSIFT and LDAPSIFT under three types of distortion: (a) low resolution, (b) blurring, and (c) uniform noise.

Fig. 10. Distributions of the number of inliers for all 105 subjects in the Bosphorus database using PSIFT and LDAPSIFT for the face images at two different resolutions
(700�600 and 1400 �1200) and under three different pose variations: PSIFT (a) 101 (images at 201 and 301), (b) 251 (images at 201 and 451), and (c) 351 (images at 101 and
451); LDAPSIFT (d) 101 (images at 201 and 301), (e) 251 (images at 201 and 451), and (f) 351 (images at 101 and 451).
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5.4. Robustness evaluation with simulated distortions

In this section, three types of distortions – namely low resolu-
tion, blurring, and uniform noise – are considered to evaluate the
robustness of PSIFT and LDAPSIFT for the skin-matching task. The
gallery and the testing set used in Section 5.3 are used as the
original image pairs.

Bicubic interpolation is used to generate lower-resolution
images with down-sampling factors of 0.875, 0.75, 0.625, 0.5,
0.375, and 0.25. For the blurring distortion, only the testing set is
blurred and the scales of the Gaussian kernels are set at 0.8, 1.6,
2.4, and 3.2. The noisy images are generated by adding 0.5%, 1%,
1.5%, and 2% of uniform noise to the images, i.e. a random number
from the uniform interval [�0.01, 0.01]�noi (where the factor
noi¼ 0:5, 1, 1.5, 2) is added to a face image whose pixel values are

in the range [0, 1]. The repeatability of the keypoints is used to
measure the robustness of PSIFT and LDAPSIFT.

Fig. 9(a)–(c) illustrates the average repeatability under these
three types of distortions. The average value of the Pore Indices is
also given as a measure of image quality under the different
distortions. PSIFT and LDAPSIFT are both scale-invariant, so they
are robust to resolution variations in certain regions, as shown in
Fig. 9(a). We find that the repeatability initially increases with a
lower down-sampling rate. But when the down-sampling rate is
lower than 0.5, the repeatability starts to decrease. This is because
the down-sampling process can eliminate some noise in the
images, which increases the repeatability. However, when the
down-sampling rate is further lowered, the details in skin regions
are also eliminated. This causes a decline in the repeatability.
The repeatability declines dramatically when the down-sampling

Fig. 11. PSIFT matching results for those pairs of faces with the median number of inliers of the 105 subjects for three pose variations: (a) 101 pose difference, 1522 inliers
detected; (b) 251 pose difference, 858 inliers detected; (c) 351 pose difference, 441 inliers detected; and (d) SIFT matching results for the image pair in (c): 28 matches are
established, but no inliers can be found via RANSAC.

Fig. 12. (a) Histogram of the number of inliers, and (b) 3D distribution of skin-matching results, based on the PSIFT skin matching of all 105 subjects in the Bosphorus
database, with poses at 201 and 301.
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factor is set lower than 0.375 (the 6th bar). Hence, the lowest
resolution of a face image that can generate a sufficient number of
pore-scale facial features is about 600�500 pixels, which is lower
than the capabilities of most digital cameras nowadays. When the
down-sampling rate is larger than 0.75 (the 3rd bar), the average

Pore Indices is approximately a constant. When the face images
are further down-sampled, some of the peaks on the DoG start
to be distorted. Hence, the Pore Index decreases with a higher
down-sampling rate. Blurring also decreases the high-frequency
information in face images, so both the Pore Indices and the

Fig. 13. Preliminary results for differentiating between identical twins.

Fig. 14. (a) Three images captured by an iPhone 5S, and (b)–(d) the corresponding matching results.
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repeatability decline with blurring, as shown in Fig. 9(b). As the
uniform noise introduces high-frequency content to faces, the Pore
Index increases with the magnitude of the noise, as shown in Fig. 9
(c). Most of the pore-scale facial features are tiny and of low
contrast. Thus, high-frequency information is easily distorted.
Consequently, the repeatability decreases when the strength of
such distortion increases.

5.5. Face matching based on the Bosphorus dataset

In this section, experiments were conducted using the
Bosphorus database [19]. The face images in this database were
captured unsynchronized and from different views. The subjects
were filmed at different angles by rotating the chair they were
sitting in to align with stripes placed on the floor indicating the
corresponding angles. All 105 subjects in the Bosphorus database
were used to evaluate the performance of our method under
different skin conditions. Four samples are illustrated in Fig. 2. The
distance threshold used in RANSAC is set at 0.0001, considering
the fact that the images are unsynchronized and that the facial
appearances are non-rigid. Fig. 10 shows the frequency of subjects
with respect to the different numbers of inliers detected for three
sets of image pairs with different combinations of poses (201 and
301, 201 and 451, and 101 and 451 poses) based on PSIFT and
LDAPSIFT. The original-size images contain distortions such as
reflectance and out-of-focus blurring. LDAPSIFT and PSIFT can
achieve a slight improvement when the images are down-
sampled. Compared to PSIFT, LDAPSIFT is more robust to different
kinds of distortion and can establish denser matches. Fig. 11 shows
three samples of the matching results based on PSIFT, with the
median number of inliers detected with respect to the three pose
combinations, and with an image resolution of 700�600.

5.6. Skin-matching difficulty analysis

In this section, we will revisit the experimental results for PSIFT
and LDAPSIFT, and analyze the face-matching difficulty based on
the statistics of the Pore Indices of the matched image pairs. Fig. 10
(a) shows the performance of PSIFT and LDAPSIFT in terms of the
frequency of subjects with respect to the different numbers of
inliers detected when the two faces under 201 and 301 poses, and
when the resolutions of the face images are 700�600 and 1400
�1200, respectively. Correspondingly, if the skin region is cropped
from the face images at their original resolution, i.e. 1400 �1200,
the histogram of the different numbers of inliers for skin matching
is shown in Fig. 12(a). The experimental results are also shown in
the 3D plot in Fig. 12(b), with the number of inliers, the normal-
ized standard deviation, and the average Pore Indices being the
three axes of the 3D plot. Lower-resolution distortion, or blurring,
can reduce the high-frequency information in the original face
images, which leads to a lower Pore Index, as shown in Fig. 9
(a) and (b). In contrast, the noise distortion will introduce more
high-frequency variations, which results in a higher Pore Index,
as shown in Fig. 9(c). Thus, if the Pore Indices of two images of the
same person are very different, at least one of those two images is
distorted. For such a pair of face images, it is relatively hard to
establish a large number of correct matches. In Fig. 12(b), a mesh is
generated based on the points in the 3D plot. We find that the
image pairs with a large average value and a small normalized
standard deviation of the Pore Indices can establish more corre-
spondences than the others can.

5.7. Applications of our approach

In this section, we will further discuss the potential applica-
tions of our proposed approach, and show some preliminary

results for the applications. Our work shows a potential way to
merge general computer-vision approaches and face-based
approaches. For example, the classical shape-from-motion method
with known camera intrinsic parameters, which extracts corre-
spondences of 3 views on top of our method, can be used in 3D
face reconstruction.

We have conducted a simple classification experiment where
we attempt to discriminate among different subjects based on
their cropped cheek-region skin images. We randomly select 20
subjects from the 105 subjects in the Bosphorus database [19]. The
skin image captured from a frontal-view image is designated as
the gallery set for each of the subjects, while the corresponding
image regions of the other 4 views are designated as the testing
set. The number of inliers, after RANSAC, is used as a similarity
measure. Both PSIFT and LDAPSIFT can achieve a 100% recognition
rate based on using only a single image per class as the gallery. A
similar experiment setting was reported in [14], which used 20
subjects and 4 skin regions per subject. For each skin region, 26
images were designated as the gallery, and 6 images were used for
testing. The result was obtained by taking the majority vote of the
4 regions, and a recognition rate of only 73% was achieved. The
significant improvement using our method is due to the fact that
PSIFT and LDAPSIFT can distinguish every pore-scale facial key-
point in a skin block, rather than treating skin images as texture, as
in [14].

Another potential application, i.e. differentiating between iden-
tical twins, is shown in Fig. 13. The images are from the ND-Twins-
2009-2010 database. Fig. 13(a) and (b) shows two image pairs of
the same subject with different illuminations. We find that our
method can handle images captured in outdoor scenes. This is due
to the fact that only the contrast of the pore keypoints, rather than
their relative position, is affected by illumination. Fig. 13(c) shows
an image pair of the same subject taken one year apart. Fig. 13
(d) shows a pair of images of twins, i.e. the query is an imposter.
No correspondences are established by RANSAC in this pair of
images.

To show the robustness of our method and its potential in
mobile applications, three face-matching results are shown in Fig.
14 based on images captured by an iPhone 5S. Note that the
environmental luminance was relatively low, the aperture was set
at F2.2, the ISO was set at 320, and the shutter speed was set from
1/15 s to 1/17 s by the iOS automatically. Thus, the images suffer
from noises due to the high ISO, and blurring due to the slow
shutter speed. However, our method can still successfully establish
a huge number of correspondences between the images.

6. Conclusion and discussion

In this paper, we have proposed a new framework to extract
pore-scale facial features from facial skin. Our method identifies
every pore in the facial images, rather than considering pore-scale
facial features as a kind of texture. We have modeled the blob-
shaped pore-scale features using a Gaussian kernel, and analyzed
the relationship between the strength of the response and the
number of DoG layers used. A new measure, namely the Pore
Index, is proposed to analyze the relationship between facial-skin
image conditions and the difficulty level of face matching, which
also reflects the adaptive threshold for keypoint detection. The
PSIFT descriptor is designed to extract the relative-position infor-
mation about the neighborhood of the keypoints. A pore-to-pore
correspondences dataset, including 4�4240 PSIFT features and
6�4240 matched pairs, is established. Based on this pore-to-pore
dataset, a learning-based pore-scale facial feature LDAPSIFT–
which is more distinctive and compact than the existing methods–
is proposed for tackling different kinds of distortions. We have
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shown via experiments that pore-scale facial features are suffi-
ciently distinctive to track a face's geometry. Furthermore, LDAP-
SIFT can efficiently reduce the computation time of feature
matching to 8% of PSIFT. For the feature-matching stage, PSIFT
needs 1.45 s, while LDAPSIFT needs only 0.12 s on an Intel i7
3.4 GHz CPU with 8 threads and 8 GB Ram PC under the MATLAB
R2012b programming environment. The runtime can be further
reduced by parallel computing techniques; this makes it affordable
for large-scale recognition/identification applications.

In our future work, we will further investigate the properties of
the pore-scale facial features, and further improve the matching
performance when the face images have a larger baseline. This
work allows for accurate 3D face reconstruction based on a
number of 2D face images, and the pore-scale facial features can
be used as a new biometric feature for person identification.
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