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High-Resolution Face Verification Using
Pore-Scale Facial Features

Dong Li, Huiling Zhou, and Kin-Man Lam

Abstract— Face recognition methods, which usually represent
face images using holistic or local facial features, rely heavily on
alignment. Their performances also suffer a severe degradation
under variations in expressions or poses, especially when there
is one gallery per subject only. With the easy access to high-
resolution (HR) face images nowadays, some HR face databases
have recently been developed. However, few studies have tackled
the use of HR information for face recognition or verification.
In this paper, we propose a pose-invariant face-verification
method, which is robust to alignment errors, using the HR
information based on pore-scale facial features. A new keypoint
descriptor, namely, pore-Principal Component Analysis (PCA)-
Scale Invariant Feature Transform (PPCASIFT)—adapted from
PCA-SIFT—is devised for the extraction of a compact set of
distinctive pore-scale facial features. Having matched the pore-
scale features of two-face regions, an effective robust-fitting
scheme is proposed for the face-verification task. Experiments
show that, with one frontal-view gallery only per subject, our
proposed method outperforms a number of standard verification
methods, and can achieve excellent accuracy even the faces are
under large variations in expression and pose.

Index Terms— Pore-scale facial feature, face verification,
face recognition, pose invariance, expression invariance,
alignment-error-robust.

I. INTRODUCTION

FACE verification is a one-to-one matching problem,
which validates (or not) the claimed identity of a person.

The claim is either accepted or rejected based on a certain
threshold. Face verification has been widely used in security
systems and electronic commercial systems due to the easy
access to face acquisition.

Many of the face recognition algorithms are based on holis-
tic facial features, which project the lexicographic ordering
of raw pixels onto a certain subspace. Examples include
eigenfaces [1], fisherfaces [2], locality preserving projec-
tion (LPP) [3], etc. All these algorithms will suffer significant
degradation in their performances when the face images
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considered are under pose, expression, and/or illumination
variations. Local features can be used to achieve better per-
formances under the different variations. The local features
are extracted from local regions or parts of the images only,
based on some transformations or descriptors. Commonly used
local features include Gabor wavelets [4], local binary pat-
tern (LBP) [5], etc. The Gabor representation of faces is simi-
lar to that of the human visual system, which is robust against
illumination and expression changes. LBP was originally
designed for texture classification [5], [6], and was introduced
to face recognition in [7]. The representation is invariant
to illumination changes and rotation. Recently, the Local
Phase Quantization (LPQ) operator [8] was proposed for the
recognition of blurred faces based on quantizing the Fourier
transform phase in local neighborhoods. Another method,
named Patterns of Oriented Edge Magnitudes (POEM) [9],
was proposed to extract facial features by applying a self-
similarity operator on accumulated edge magnitudes across
different directions. Multi-Directional Multi-Level Dual-Cross
Patterns (MDML-DCPs) [10] was proposed to encode discrim-
inative information along the directions of facial components.
However, feature representations and face recognition algo-
rithms always require the face images to be normalized and
aligned to achieve a satisfactory accuracy level. In addition,
the pose, expression, and illumination variations will cause
non-linear distortions on the 2D face images, due to the fact
that the facial features (eyes, nose, mouth, etc.) do not appear
on a planar surface. When the 3D faces are projected onto a
2D plane, non-linear distortions will happen, which linear sub-
space methods cannot cope with. Although non-linear kernel
methods [11], [12] can be used, the improvement is still lim-
ited and the methods become more computationally intensive.

A lot of research has been conducted to solve
non-frontal-view face recognition, including multi-
view [13], [14], cross-view [4], [15], [16], and matching-
based [17], [18] face recognition. Multiview face recognition
requires a number of training images at different poses per
subject, which is impractical in real applications. The cross-
view approach usually applies 2D or 3D appearance models to
synthesize face images in specific views. Alignment is needed
to establish correspondences between two faces in different
poses. Matching-based methods attempt to establish local
correspondences between the gallery and query images, which
are usually alignment-free. Our proposed method adopts this
advantage, so the accurate alignment of faces is unnecessary.

With the development of multimedia hardware such as
HDTV and digital cameras, it has become easy to access
high-resolution (HR) images. This enables us to analyze
more sophisticated feature, in addition to the traditional facial
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Fig. 1. The face-verification framework based on the PPCASIFT feature: (a) two examples of query pairs for face verification - the top row is a client and the
claimed identity, and the bottom row is an impostor and the claimed identity; (b) the pore-scale facial-keypoint-matching results and the initial block-matching
results between the query and the claimed-identity images; (c) the refined block-matching results (the color regions represent those aggregated, matched
blocks); (d) the local region (in the yellow box) of the gallery image which has the maximum local-matching density; and (e) the verification results.

features like face shape, eyes, nose, and mouth. HR face
recognition is a relatively recent topic; it extracts subtle and
detailed information, such as mark-scale features (e.g. moles,
scars) and pore-scale features (e.g. pores, hair), which contains
more distinctive information than low-resolution (LR) face
images do.

An analysis from macrocosm to microcosm was
proposed [19] to solve HR face recognition. This method
uses Gabor filters to extract pore-scale features (namely
skin texton) to form a texton histogram (a similar idea to
bag-of-words [20]). Then, regularized LDA is applied to
preserve intrinsic information and reduce interference. The
Gabor-based skin texture extracted achieves a recognition
rate of between 38.5% and 57.3%, so the skin texture can
be used as an auxiliary feature only. Also, since the method
uses LDA, more than one HR face is needed for training.
This may not be feasible for some real-world applications.

Another HR face-recognition method was proposed based
on facial-marker detection [21]. This method uses LoG blob
detection for marker extraction after applying the active
appearance model (AAM) [22] to detect and remove facial
features such as the eyes, nose, mouth, etc. However, only a
very limited quantity of marker-scale features can be extracted
from human faces, so the features only complement the
traditional methods.

Similarly, in [23], facial marks, which are manually anno-
tated by multiple observers, are used as biometric signatures
to distinguish between identical twins. That work paid more
attention to particular biometric traits, like facial markers, than
to the overall facial appearance. However, there is no guarantee
that a face image has a sufficient number of traits (e.g. scars,
moles, freckles, etc.) for recognition.

With human biology, it is impossible for two people, even
identical twins [24], to have an identical skin appearance.
Inspired by this idea, a novel pore-scale facial feature has been
proposed in [25]. By adapting the SIFT detector and descriptor
to the pore-scale facial-feature framework, and using a
candidate-constrained matching scheme, the algorithm [25]
can establish a large number of reliable correspondences of
keypoints between two face images of the same subject which
may have a big difference in pose. Such pore-scale facial

features are dense and distinguishable, which are the desirable
aspects for face verification.

In this paper, we propose a face-verification algorithm based
on the pore-scale facial features to take advantage of the
HR information. One of the major advantages of the proposed
approach is that the facial-skin regions under consideration are
usually more linear - i.e. approximate to a planar surface -
than other facial features, so the recognition performance
will be very robust to pose, expression, and illumination
variations, etc. Furthermore, only one gallery sample per
subject is needed, and an accurate face alignment is not
necessary to achieve a good performance. An overview of
our proposed framework is shown in Fig. 1. Firstly, the pore-
scale facial features are detected and extracted from a testing
or a query image. Then, initial keypoint matches between
the testing image and that of the claimed identity in the
gallery are established; the initial keypoint matches are then
converted to block matches, which are further aggregated to
eliminate the outliers, as shown in Fig. 1(b) and (c). Finally,
the verification result is determined based on the maximum
density of the local, aggregated, matched blocks on the face
images, as illustrated in Fig. 1(d). In our experiments, we
will show the superior performance of our face-verification
algorithm compared to the standard face-verification methods.

The contributions of this paper and the novel aspects of the
proposed method are listed as follows:

• An alignment-error-insensitive and pose-invariant face-
verification approach is proposed. In other words, only the
approximate locations of facial features such as the eyes
and mouth are necessary. Non-frontal-view face images
do not need to be included in the gallery. These make
our method suitable for practical and real applications.

• To the best of our knowledge, our method is the first
to perform face verification using pore-scale facial
features rather than landmark-features (e.g. contours,
eyes, nose, mouth) or marker-scale features (e.g. moles,
scars).

• A new descriptor is proposed, namely Pore-Principal
Component Analysis (PCA)-Scale Invariant Feature
Transform (SIFT) (PPCASIFT), which can achieve
a similar performance to the Pore-SIFT (PSIFT) [25]



LI et al.: HR FACE VERIFICATION USING PORE-SCALE FACIAL FEATURES 2319

descriptor but which requires only 9% of the PSIFT
descriptor’s computation time in the matching stage.

• A fast and robust fitting method is proposed to establish
the block matching of two faces based on matched
keypoints, which considers the non-rigid structure of
faces and which can also remove outliers at the same
time.

• A pose-invariant similarity measure, namely the
maximized local-matching density, is proposed to provide
a normalized similarity measure for pose-invariant face
verification. Based on the maximized local-matching
density, no prior knowledge of pose information is
needed.

The remainder of this paper is organized as follows.
Section II briefly reviews the detection of pore-scale facial
features. Section III presents two descriptors for the pore-scale
facial features, namely PSIFT and PPCASIFT. Section IV
introduces the feature-matching and robust fitting method for
refining the correspondences of blocks between two faces
for face verification. Section V describes a new similarity
measure for face verification, namely the maximized matching
density, which makes our method robust to pose variations.
Section VI presents the experimental results and compares our
face-verification method with some standard face-verification
methods. In particular, we will evaluate the performances of
the different methods when the query faces are under pose and
expression variations. Section VII summarizes this paper, and
discusses our future work on the pore-scale facial feature.

II. PORE-SCALE FACIAL-FEATURE DETECTION

Pore-scale facial features include pores, fine wrinkles and
hair, which commonly appear in the whole face region. Most
of the pore-scale facial features are blob-shaped features.
Hence, the PSIFT detector [25] employs the Hessian-Laplace
detector on the multiscale difference of Gaussians (DoG) for
blob detection.

In order to generate a sufficient number of correspondences
between two face images, a large number of reliable feature
points should first be detected on each of the two faces.
Meanwhile, from the biological viewpoint, different people
should have a similar quantity of pores in their facial skin.
Hence, the PSIFT detector employs a quantity-driven approach
via an adaptive threshold. To avoid the extremely dense DoG
responses at hairy (e.g. bearded) areas, the PSIFT detector
estimates the adaptive threshold based on a cropped skin
region in the cheek instead of the whole face image, as
shown in Fig. 2. With a consideration of both the robustness
and the completeness of matching, the number of detected
pore-scale keypoints Nk in the cropped region is specified
to be within the range [210, 240] by an adaptive threshold.
To determine the value of the adaptive threshold, the binary
search method [26] is performed on a threshold list, which
is from 0 to 0.0025. Also, the quantity of inliers is used to
evaluate the matching performance by experiments at differ-
ent sampling frequencies and different priors of smoothing,
respectively. Thus, the number of DoG octaves is set at 3,
and 8 scales are sampled in each DoG octave. In addition,
the prior smoothing, which is applied to each image level

Fig. 2. The size of a cropped skin region, whose pore features are to be
extracted.

Fig. 3. Visualization of keypoints on the skin images of 4 distinct subjects
(different colors for the keypoints indicate their scales as represented by the
color bar).

before building the scale-space representation, is set at 1.
Usually, about 4,500 keypoints are detected for a whole face
region. Fig. 3 illustrates the keypoint-detection results on the
cropped region of four distinct subjects, where keypoints with
different scales are represented using different colors.

III. PORE-SCALE FACIAL-FEATURE DESCRIPTION

Most pore-scale facial features are similar to each other
when they are observed individually, because most of them
are blob-shaped, and the surrounding region of each keypoint
has almost the same color. However, the spatial distribution
of pores on the skin is distinctive. Based on this biological
observation, designing a distinctive pore-scale facial-feature
descriptor becomes possible.

PSIFT [25], adapted from SIFT [27], was proposed using
the gradient information of neighboring keypoints to describe
the textures and the spatial distribution of pores. The number
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of sub-regions and the support size of each sub-region are
expanded in PSIFT so as to extract the relative-position infor-
mation about the neighboring keypoints. In this way, a PSIFT
descriptor is constructed from the gradient orientations within
a region containing 8 × 8 sub-regions with each sub-region
represented by a histogram of 8 orientation bins. Therefore,
PSIFT is represented as a 512-element feature vector for
each keypoint description. In addition, the keypoints are not
assigned a main orientation because most of them are blob-
shaped and do not have a coherent orientation. Furthermore,
as the rotation of a face image is usually not large, generating
a rotation-free description of the pore-scale facial feature is
not necessary.

However, matching two keypoints using descriptors
of 512 dimensions is computationally expensive. To improve
the method’s efficiency, we propose a more compact keypoint
descriptor in this paper, namely Pore-PCA-SIFT (PPCASIFT),
which is adapted from PCA-SIFT [28] and which uses PCA
to reduce the dimensionality of the descriptor. We extract
the description of a keypoint using a patch/sampling size
of 41 × 41, with the keypoint at the center, at a given window
size (48 times the scale determined by the PSIFT detector).
The parameters are determined by a Powell method [29] based
on the verification rates on a small dataset. The initial setting
was chosen so that the PPCASIFT descriptor window has the
same size as PSIFT. Unlike PCA-SIFT, the patches of pore-
scale facial keypoints do not need to be aligned or assigned
their main orientations. However, PCA can still represent these
patches. The main reason for this is that the patches contain the
relative spatial information about the neighboring keypoints,
and the patterns of patches are relatively simple. If a sufficient
number of patches is available for learning the principal
components, the patches can then be represented efficiently
in a much lower subspace. We selected 16 face images from
4 distinct subjects with different skin conditions in order to
extract about 90,000 patches (after removing the keypoints
near the borders). The horizontal and vertical gradient maps
in the 41×41 patch are computed, and are represented by a
vector containing 2 × 39 × 39 = 3, 042 elements. The vectors
are normalized to unit magnitude, and then PCA is applied to
these training vectors. The 72 leading eigenvectors are used
to form the projection matrix for PPCASIFT, which is of
dimension 3, 042 × 72. To generate the PPCASIFT
descriptor for a given keypoint, its normalized gradi-
ent vector is computed and is then projected onto the
eigenspace formed by the 72 eigenvectors. Compared to
the PSIFT descriptor which has a dimension of 512,
the dimension of the PPCASIFT descriptor is 72 only.
In other words, the PPCASIFT feature is much more
compact and computationally efficient in the matching stage
than PSIFT.

IV. PORE-SCALE FACIAL-FEATURE MATCHING

AND ROBUST FITTING

In [25], a double-matching scheme (namely candidate-
constrained matching) was proposed to narrow the matching
of keypoints between two face images and to achieve
accurate face matching, based on both intra- and inter-scale

facial information. RANSAC [30], as a robust fitting method,
is then applied to the matched keypoints to remove the outliers
reliably. To perform face verification efficiently, we modify
the candidate-constrained matching from two passes to one
pass only. In addition, a new robust fitting scheme, namely
parallel-block aggregation, is proposed to refine the candidate-
constrained matching results. As the keypoint/block matching
may result in one-to-many or many-to-many matches, match-
ing from gallery faces may differ from that from testing faces.
In our experiments, we only consider the block matching from
a testing face image to a gallery face image.

A. Feature Matching

For verifying whether or not two face images are of the same
identity, correspondences are established from the query image
to the gallery image of the claimed identity. Suppose that the
position and the scale of a keypoint in the query image are
(xq, yq ) and σ q , respectively, while the position and the scale
of the i th keypoint in the claimed image are (xc

i , yc
i ) and σ c

i ,
respectively. Assume that the height of the gallery
image is H .

First, the spatial information of the face image is considered
in feature matching. Considering that the poses of faces are
limited to within a certain range, and the y coordinates of the
two keypoints from the two face images at different poses are
close, then the position of the matched keypoint in the gallery
image should satisfy the following constraint:

|yc
i − yq | < λH, (1)

where λ is a factor and is set at 0.2 in our experiments.
Second, the scales of the two keypoints, one from the query

and the other from the gallery, should be close to each other.
Therefore, the ratio of the scale of the keypoint in the query
image and the i th keypoint in the gallery image should be
close to 1, and is defined to be within the range as follows:

1/μ � |σ c
i /σ q | � μ, (2)

where μ is a constant larger than 1. When μ is close to 1, the
scales of the two keypoints are similar. In our experiments,
μ is set at 2.

Based on these two constraints, the number of keypoint
candidates is narrowed to about 30% of all the keypoints in
the gallery image. Then, the distances between a keypoint in
the query image and the remaining keypoints in the gallery
image are computed. The distance between two keypoints
is measured using the Euclidean distance between their cor-
responding pore-scale feature descriptors. The best-matched
keypoint in the gallery image is the one with the smallest
Euclidean distance. We define the distance ratio, which is the
ratio between the distances of a keypoint from the query image
to its nearest keypoint and to its second-nearest keypoint in
the gallery image. We accept the match if the distance ratio is
smaller than 0.85, which is set empirically by experiments. The
initial matching results using our method are shown in Fig. 4;
this shows the effectiveness of using the pore-scale facial
features.
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Fig. 4. Initial matching results for face images of pose R10 and pose R45:
(a) PPCASIFT, and (b) SIFT. The matching results of PSIFT are much denser
and more structurally accurate than those of SIFT.

B. Robust Fitting

After the detection, description, and initial matching of the
keypoints, a large number of matched keypoint pairs between
a query/testing face and a gallery/claimed face have been
established. However, the matching results still include many
outlier pairs. Consequently, further refinement is necessary to
improve the matching accuracy. In [25], RANSAC [30] is
used to refine the matching results by fitting to the epipolar
constraint. However, this process is of high complexity and
requires a large number of iterations, which is not desirable
for real-time face verification. In addition, the number of
matches cannot be used directly as a similarity measure
for verification, because the number depends on the degree
of variation between the two faces to be matched. In this
paper, we propose a more efficient and effective scheme
to refine the matches and provide a normalized measure
of the correspondences for face verification. Our basic idea
is to transfer the keypoint correspondences to block-based
correspondences. The line connecting two correctly matched
blocks in the two face images should be approximately
parallel to the other lines of the corresponding neighboring
blocks.

First, matched keypoint pairs are transformed into matched
block pairs, which can further remove some outliers. All the
face images are divided into non-overlapping blocks of size
W ′ × H ′. Assume that a query face image, Iq , estab-
lishes keypoint correspondences to a gallery face image, Ig .

Algorithm 1 Parallel-Block-Aggregation Algorithm

Fig. 5. Use block B and its upper neighboring block U in a query image (Iq )
to illustrate the parallel-block-aggregation scheme. B ′ and U ′ in a gallery
image (Ig) are the corresponding matched blocks of B and U , respectively.
U ′

perfect is the perfect location for U such that UU ′
perfect is exactly parallel

to B B ′. However, human faces are non-rigid and may have expressions.
Block B ′ is aggregated if U ′ is inside the neighborhood of U ′

perfect, which is
represented as a circle with the red, dashed line.

If a keypoint resides in a block, denoted as B , in Iq and is
matched to a keypoint in Ig which resides in block B ′, the
block pair B and B ′ is considered to be initially matched.
As shown in Fig. 1(b), the initial block-matching result of an
impostor is much sparser than that of a genuine subject; this
characteristic is useful for face verification.

However, some of these initially matched block pairs are
still outliers. In order to achieve a robust and accurate face-
verification performance, we propose a new, robust fitting
scheme, namely parallel-block aggregation. Algorithm 1
shows the pseudocode of the parallel-block-aggregation algo-
rithm, and Fig. 5 illustrates the robust fitting scheme. Block B
and one of its nu neighboring blocks, U , in Iq are initially
matched to B ′ and U ′ in Ig , respectively. For the perfect
matching of an inlier, U should match U ′

perfect. However,
due to the fact that faces are non-rigid and may have local
changes caused by facial expressions, the matching from U
to any block in the neighborhood of U ′

perfect within a certain
radius, R, is considered valid, i.e. the line joining U and U ′,
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Fig. 6. Selection of a local region with the maximized local-matching
density: (a) the frontal-view gallery face image, (b) two query face images at
pose “right 10°” (the 1-st row) and pose “right 45°” (the 2-nd row), (c) the
corresponding block-aggregation results on the gallery face for the two query
images at different poses, and (d) the selected local regions in the two images
with maximum local-matching density.

and that joining B and B ′, are considered to be parallel. R is
the threshold of the distance between U ′ and U ′

perfect, which
forms an acceptable, circular region for block matching.
As illustrated in Fig. 5, the block U ′ inside the circular region
is called a parallel-supporting block of B ′. The block B ′ is
aggregated if the number of its parallel-supporting blocks is
larger than or equal to nt . By experiments, we set nu = 4, the
distance threshold R = 1.5 × block size, and nt = 1, which
can produce the best performance. Fig. 1(c) and Fig. 6(c)
illustrate the parallel-block-aggregation results.

V. SIMILARITY MEASUREMENT

The area of the aggregated blocks (or the number of
aggregated blocks) is variant to poses, due to the fact that the
areas of a corresponding region in two faces with different
poses are not the same. In this section, we propose a new
normalized similarity measure, namely the maximized local-
matching density, for face verification with pose variations.

A. Matching Density

Denote R(x) as a face region of a particular size located at x.
The total number of blocks in R(x) is counted, and is denoted
as Ntotal(R(x)). After robust fitting, the number of matched
blocks in the region R(x) is denoted as Nmatched (R(x)). Then,
the matching density ρ of the region R(x) is defined as
follows:

ρ(R(x)) = Nmatched (R(x))/Ntotal(R(x)), (3)

where the value is within the range [0, 1].

B. Local-Region Selection

The well-matched regions of two faces of the same subject
are always unoccluded and more planar areas, as illustrated
in Fig. 6(c). These regions have significantly fewer non-linear
distortions when the faces to be matched have different poses.
To ensure that the matching density of a well-matched local

region is robust to poses, the size of such a local region R(x)
should always be smaller than the common area R′(θ) of
the two faces, where θ is the pose difference between the
fontal-view gallery face image and the query image. Thus, the
matching density of the local region ρ(R) is more invariant to
the pose difference θ . Generally, we define the size of the local
region R as in Fig. 6, by considering the following conditions:

Ntotal(R(x)) ≤ min
θ

Ntotal(R′(θ)) ≈ Ntotal(R′(45◦))

≈ 20%W×H. (4)

Determined by experiments, the size of the local region R is
set at 15%W×H , as shown in Fig. 6.

Then, the location x, where the local-matching density
ρ(R(x)) is a maximum, is searched as follows:

P = max
x

ρ(R(x)), (5)

where P is the maximized local-matching density of the local
region R (represented by the yellow box in Fig. 6(d)), which
is insensitive to pose variations and which represents the
similarity between the claimed gallery image and the query
image.

VI. EXPERIMENTS

The performances of our proposed face-verification methods
(based on PSIFT and PPCASIFT features) are evaluated using
images under pose variations, expression variations, different
capture times, and alignment errors. In all the experiments,
only a single frontal-view face of each subject is in the gallery
set. To compare the performances of the different methods,
we measure the receiver-operating characteristic (ROC) curve
by varying a threshold to produce different false-rejection
rates (FRR) and false-acceptance rates (FAR). The equal-error
rate (EER), where the above two rates are equal, is also
measured.

A. Preprocessing

The performance of the pore-scale face-verification
algorithm is evaluated on three public databases: the
Bosphorus dataset [31], the Multi-PIE dataset [32], and
the FRGC v2.0 dataset [33]. All the face images used in
the experiments are converted to gray-scale images. For each
database, a single neutral, frontal-view facial image of each
subject is taken for the gallery.

The Bosphorus dataset [31] contains 4,666 HR face
images of 105 subjects. The Multi-PIE database [32] contains
755,370 images of 337 subjects, which were recorded over a
span of 6 months. Individual attendance at sessions where the
HR images were captured varies from 203 to 249 subjects.
Overall, 129 subjects appear in all four sessions, which are
used in the experiment. The third dataset used is the FRGC
v2.0 database [33]. It contains approximately 50,000 images
of over 200 subjects, which were collected about once a week
from 2002 (Fall) to 2004 (Spring). In the experiments, we
use the landmark information to retrieve high-quality images
from the FRGC v2.0 database. A total of 9,844 images, whose
number of pixels between the centers of the two eyes is larger
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Fig. 7. Examples of preprocessed faces from the different datasets: (a) Facial images with different poses and expressions, which are aligned both horizontally
and vertically for the alignment-required methods; (b) Facial images cropped for our proposed face-verification method, which is robust to alignment errors.

than 280, are selected. Then, these high-quality images are
divided into five sessions according to the capture time.

Since our proposed method is robust to alignment errors,
we simply crop the images to include the faces only. In order
to further improve efficiency, we down-sample all the cropped
facial images to a resolution of about 560×670. The impact
of resolution on keypoint matching was discussed in [25],
which has shown that down-sampling within a certain range
has a slight effect on the matching result. For feature-block
matching, we partition each face image into 30×45 blocks
uniformly, which is experimentally determined.

To compare our method with other standard face-verification
methods wherein face alignment must be performed, all the
face images are manually aligned according to the centers of
the two eyes and the outer corners of the lips. All of the
eyes and lips are aligned to a corresponding vertical and a
horizontal line, as illustrated in Fig. 7. Then, the aligned faces
are normalized to the same size, 560×670. Some example
face images used for verification are shown in Fig. 7. All of
these aligned images are then down-sampled by a factor of 0.2
(i.e. to the size of 112×134), which can result in a performance
that is better than or similar to using either the resolu-
tion 560×670 or down-sampled images corresponding to the
factors set at 0.5 and 0.1.

Our proposed method is compared with the Eigenface
method (PCA), the Gabor feature with PCA (Gabor+PCA),
the LBP method [7] and the LBP feature with PCA
(LBP+PCA). For the Gabor+PCA face-verification method,
Gabor filters of eight orientations (0, π/8, . . . , 7π/8) and
five scales (π/2, π/2

√
2, . . . , π/8) are employed to extract the

features, which are concatenated and then normalized to zero
mean and unit variance. Since the Gabor features are extremely
huge, PCA is applied to reduce the feature dimensionality.
To retain as much information as possible, N − 1 components
are used, where N is the number of training samples. For
LBP-based face verification, the LBPu2

(8,2) operator is used, and
the images are divided into 7 × 7 non-overlapping windows.
All the images are down-sampled to the size of 112×134,
which is similar to the image resolution used in [7]. For the

Fig. 8. EER of the different methods for face images under different poses.

LBP+PCA method, the LBP features from non-overlapping
windows are concatenated to a long feature vector. Then, PCA
is applied to reduce the feature dimensionality to N − 1.
The similarity metric for the LBP method is the weighted
Chi-square distance where the same weight matrix as [7] is
used. For PCA, Gabor+PCA and LBP+PCA, similarity metric
used is the l2 distance.

B. Face Verification With Pose Variations

To evaluate the robustness of the different face-verification
methods to pose variations, the 105 frontal-view faces from
the Bosphorus dataset were selected to form the gallery set,
while images of the 5 poses (R10, R20, R30, R45, L45)
form 5 testing sets, respectively.

Fig. 8 and Fig. 9 show the EER results for each pose and
the ROC curves under different poses, respectively. We can
see that the performances of all the other methods degrade
significantly when the pose variation becomes larger. Note
that the performances of the LBP-based face-verification
methods degrade significantly under large pose variations.
This may be because the histograms representing the
texture information about the frontal and non-frontal faces
become more uncorrelated when the pose difference increases.
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Fig. 9. ROC curves of the different methods for face images under all poses.

Fig. 10. Distance matrices of the PPCASIFT, PSIFT and Gabor+PCA
methods (from top to bottom) under different poses: (a) R10, (b) R20, (c) R30,
and (d) R45. PPCASIFT, which has its diagonal line the darkest, performs
the best in distinguishing clients from impostors.

The LBP method using a constant weight matrix is not suitable
for face images with different poses; i.e. the prior knowledge
of pose for adaptive weights is necessary. In contrast, both
the PPCASIFT- and PSIFT-based face-verification methods
can maintain their performances with a lower EER under
a large pose difference, such as 45 degrees. In particular,
PPCASIFT achieves a slightly better performance than PSIFT,
and has a feature dimension of 72 only. The result shows that
PSIFT and PPCASIFT are robust to large pose variations.

We also transform the PSIFT and PPCASIFT similarity
metrics into distance metrics by subtracting each similarity
score or matching density from one, respectively. Fig. 10
shows the distance matrices of the three face-verification
methods with the best performance under pose variations:
these are PPCASIFT, PSIFT, and Gabor+PCA, respectively.
This can provide a more intuitive way of illustrating their
verification performances. Both the PPCASIFT and PSIFT
methods can effectively distinguish clients from impostors, and
they can achieve a better performance than the Gabor+PCA
method, as their results show a much darker diagonal line
than the Gabor+PCA method for all four poses. In addition,
PPCASIFT performs better than PSIFT, especially under large
pose variations such as R30 and R45.

Fig. 11. EER of the different methods under different expressions.

Fig. 12. ROC curves of the different methods under different expressions.

C. Face Verification Under Different Expressions

The verification of faces under facial-expression variations
is another hot topic for real applications. We evaluate the
robustness of our proposed method using images expressing
6 different emotions (anger, disgust, fear, happiness, sadness,
and surprise) from the 105 subjects in the Bosphorus dataset.
We compare our proposed method with the other methods
in terms of the EER for each expression and the ROC
curves under expressions, as shown in Fig. 11 and Fig. 12,
respectively.

From the results, all the verification methods can achieve a
better EER than the results in the previous section, since all the
testing faces are frontal view. The Gabor+PCA, the LBP and
the LBP+PCA methods are more effective than PCA. Both
the PSIFT and the PPCASIFT methods outperform the other
four methods, and achieve lower EERs in all cases. However,
in this expression-variation case, the PPCASIFT method with
local-matching density falls a little behind PSIFT. One reason
for this may be that the PPCASIFT subspace is learned only
from images with a neutral expression rather than with large
expression variations.

D. Face Verification on Face Images Captured
in Different Time Sessions

Our method relies on matching facial-skin regions, which
involves the challenge of skin conditions changing with time.
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Fig. 13. EER of the different methods through different sessions.

Fig. 14. ROC curves of the different methods through different sessions.

Therefore, in this section, we will evaluate the robustness of
our proposed algorithm to face images captured at different
times.

In this experiment, faces in the Multi-PIE dataset, which
appear in all four sessions, are used. The longest time interval
between the photos captured is 6 months. We select faces
with a neutral expression in Session 0 to form the gallery set,
while the faces captured in Session 0 with expressions, and
those captured in the other three sessions, form the testing sets.
The EERs and ROC curves of each face-verification method
in sessions are shown in Fig. 13 and Fig. 14, respectively. The
results show that our method still outperforms the other three
methods for face images captured at different sessions. The
superior performance of our facial-skin-based method may be
due to the fact that, over time, facial appearances can change
in ways other than just their skin condition. In addition, the
geometric relations between the pores in a skin region should
be very stable over time.

E. Face Verification Under Large Time Span
and Different Expressions

In order to further examine the robustness of our proposed
PPCASIFT and PSIFT methods, we use the FRGC v2.0
database for an extensive face-verification experiment.
After eliminating the low-quality images in uncontrolled

Fig. 15. Time span of the FRGC dataset.

TABLE I

EER(%) OF DIFFERENT FACE-VERIFICATION METHODS

FOR ALL THE EXPERIMENTS

environments (e.g. images taken in the wild with a resolution
of less than 400×400), we use the remaining 9,844 images
of 362 subjects for our verification task. According to the
capture-time duration of each image, a new experiment
protocol is proposed. The total time span is about 400 days
(58 weeks), as shown in Fig. 15. We used one randomly
selected frontal face of each subject, taken at the beginning
of this time span, as the gallery image, and we divided the
remaining images into five groups (0-2 weeks, 3-10 weeks,
11-18 weeks, 19-26 weeks, and more than 26 weeks)
for testing. We also compared the EERs of the different
face-verification methods. The results are tabulated in
Table I, together with those of the previous three experiments.
In general, these methods using pore-scale features can achieve
much better performances when faces are under variations of
pose, expression, and capture time. In particular, by extracting
the PPCASIFT features, we can achieve greater efficiency
while still maintaining a similar performance to PSIFT.
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TABLE II

EER(%) OF THE DIFFERENT FACE-VERIFICATION METHODS WITH DIFFERENT ALIGNMENT ERRORS

Fig. 16. Face images with a displacement vector added: (a) Samples of
testing images when σ = 50, and (b) the corresponding cropped regions for
the PSIFT detector used to estimate the adaptive threshold.

F. Robustness to Alignment Error

In this section, we will evaluate the performances of
PSIFT and PPCASIFT in cases of different alignment errors.
Those well-aligned frontal face images with neutral expression
among the 105 subjects in the Bosphorus dataset are chosen
to form the gallery set. The other 453 face images, expressing
6 different emotions (anger, disgust, fear, happiness, sadness,
and surprise), form the testing set. All these images are
normalized to size 560×670. A random displacement vector
(�x , �y) is added to the location of each face in the testing
set, where �x and �y are uncorrelated and normally distrib-
uted with zero mean and a standard deviation of σ . Fig. 16(a)
shows some samples of the testing images when σ = 50,
and Fig. 16(b) shows the corresponding cropped regions for
the PSIFT detector used to estimate the adaptive threshold
for pore keypoint detection. It is obvious that the estimated
thresholds will also be distorted. For PCA, Gabor+PCA, LBP
and LBP+PCA, these images are further down-sampled by a
factor of 0.2. Six experiments were conducted with the testing
images distorted by the displacement vector with six different
σ values.

The EERs of PSIFT and PPCASIFT, as well as other
face-verification algorithms, with different alignment errors
are summarized in Table II. It can be seen that PSIFT and
PPCASIFT are robust to different alignment errors, and
perform well even when suffering from a large alignment
error. Gabor+PCA, LBP and LBP+PCA work well only when
there is a small or no alignment error; their performances
drop significantly when the alignment error increases. Of these
methods, PCA is sensitive to alignment errors even with small
σ values.

VII. CONCLUSION AND DISCUSSION

In this paper, we have addressed the problem of HR face
verification based on pore-scale facial features. The proposed
method is robust to alignment errors and pose variations, while
the gallery set requires only a single image per subject. The
PSIFT and PPCASIFT features are highly distinctive, and
PPCASIFT can efficiently reduce the computational time of
the matching process to about 9% of that of PSIFT, while a
similar performance level can be maintained. For each query in
the feature-matching stage, PSIFT needs 1.45 seconds, while
PPCASIFT needs only 0.13 seconds on an Intel i7 3.4GHz
CPU with 8 threads and 8GB Ram PC under the MATLAB
R2014a programming environment. These runtimes can be fur-
ther reduced by using GPU parallel computing techniques. The
runtime of the robust-fitting stage is less than 0.01 seconds.

Furthermore, the proposed parallel-block-aggregation and
matching-density schemes can be applied to other image-
analysis tasks such as object recognition, image annotation,
since they provide an approach to transforming point matching
into similarity measurement. Experimental results have shown
that our method can achieve a superior performance under
a range of variations, especially under large pose variations.
To the best of our knowledge, this is the first work on HR
face verification that uses pore-scale facial features and estab-
lishes such a large number of correspondences between faces.
In addition, our proposed face-verification method can tackle
pose, expression, and capture-time variations simultaneously.

In our future work, we will investigate the fusion of
pore-scale facial features from HR images with larger-scale
facial features from LR images. We will also study how to
further improve the efficiency of the proposed method, and
apply it to other important areas like face recognition and
3D face reconstruction.
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